Mass Transport Investigated with the Electrochemical and Electrogravimetric Impedance Techniques. 2. Anion and Water Transport in PMPy and PPy Films

Haesik Yang and Juhyoun Kwak*

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taegon 305-701, Korea

Received: March 12, 1997

Water transport during anion transport in poly(N-methylpyrrole/nitrate) (PMPy/NO₃), poly(N-methylpyrrole/chloride) (PMPy/Cl), and poly(N-methylpyrrole/sulfate) (PMPy/SO₄) films, where ion transport is anion-specific, has been investigated by comparing electrical responses with gravimetric responses in the cyclic electrochemical quartz crystal microbalance (E EQCM) experiment and the impedance experiment. It is shown that the number of accompanying waters per Cl⁻ or SO₄²⁻ is considerable, whereas the number per NO₃⁻ is not large. The number of accompanying waters per anion does not change extensively with the concentration of an electrolyte solution and the applied potential. Moreover, the possibilities of OH⁻, H⁺, cation, and water transport in poly(pyrrole/nitrate) (PPy/NO₃) and poly(pyrrole/chloride) (PPy/Cl) films, where ion transport is not anion-specific, have also been investigated. It is found that OH⁻ moves competitively with NO₃⁻ or Cl⁻ during their redox reaction.

Introduction

The redox reaction of a conducting polymer film is accompanied by ion transport into or out of the film. Because the ion transport behavior governs its redox properties, many efforts have been directed to the studies on the ion transport mechanism.1

Recently, we have obtained important information on cation and accompanying waters2 during the redox reaction of poly-(pyrrole/copper phthalocyanineterminosulfonate) (PPy/CuPTS) films3 by use of the electrochemical quartz crystal microbalance (EQCM) technique,4 the electrochemical impedance technique,5 and the electrogravimetric impedance technique.6 The number of accompanying waters per cation depends on the hydration number of a cation in an electrolyte solution; it increases with the sequence of Cs⁺ < K⁺ < Na⁺ < Li⁺ < Mg²⁺ and increases as the electrolyte concentration decreases. The number of accompanying waters per cation exhibits the hysteresis behavior during the redox cycle and increases during insertion of a cation whereas it is uniform during exclusion of a cation.

The dominant ionic species depends on the choice of the dopant anion and the solvent/electrolyte system.7 It has been known that anion transport is dominant in the film doped with a small-size anion such as poly(pyrrole/nitrate) (PPy/NO₃) films,8 poly(pyrrole/chloride) (PPy/Cl) films,9 and poly(pyrrole/perchlorate) (PPy/ClO₄) films.10 It was reported that the contribution of a cation is small in the aqueous solution where the cation is composed of only a divalent cation such as Ba²⁺.11 It was also reported that the mass change during the redox reaction of PPy/Cl films does not show Cl⁻-permselective behavior,9 that H⁺ is involved in ion transport during the redox reaction of PPy/Cl films,9 and that OH⁻ is considerable during the redox reaction of PPy/NO₃ films.8,9,12 Moreover, when the mass change is less than that in ion-specific transport, the small mass change has been explained by counterion transport3,8a,7b,9 or counter-directional water transport.3,12 Thus, there is the possibility of OH⁻, H⁺, cation, or water transport in addition to anion transport in the PPy films.

There have been many studies on anion and water transport in redox polymer films such as poly(vinyferrocene) films13 and [Os(bpy)₃(PVP)Cl]⁺ films,14 where the number of accompanying waters per anion is very large. On the other hand, in conducting polymer films, there is no quantitative data for the number of accompanying waters per anion, although much of the work has been focused on the anion transport mechanism. In this study, anion and water transport for poly(N-methylpyrrole) (PMPy)15 and PPy films in aqueous electrolyte solutions have been investigated from both cyclic EQCM experiment and impedance experiment. Electrical responses (current or electrochemical capacitance) and gravimetric responses (mass change rate or electrogravimetric capacitance) have been compared to clarify the anion and water transport behavior. First, the number of accompanying waters per anion for poly(N-methylpyrrole/nitrate) (PMPy/NO₃), poly(N-methylpyrrole/chloride) (PMPy/Cl), and poly(N-methylpyrrole/sulfate) (PMPy/ SO₄) films in electrolyte solutions containing a divalent cation is investigated in terms of the nature of an electrolyte solution and their redox state. And then, in PPy/NO₃ and PPy/Cl films, the possibilities of cation, water, OH⁻, and H⁺ transport in addition to NO₃⁻ and Cl⁻ transport, respectively, are examined.

Experimental Section

Chemicals. N-Methylpyrrole, pyrrole, NaNO₃, Mg(NO₃)₂, Ca(NO₃)₂, Ba(NO₃)₂, MgCl₂, BaCl₂, MgSO₄, and D₂O were purchased from Aldrich and used as received. Double-distilled water was used for the preparation of all solutions.

Electrochemistry and Film Preparation. An electrochemical cell and electrodes used in this study were the same as those reported previously.2 PMPy/NO₃ films were grown potentiostatically at 0.65 V vs Ag/AgCl in a solution of 0.05 M N-methylpyrrole and 0.2 M NaNO₃. Because the thickness of PMPy/Cl and PMPy/SO₄ films grown in Cl⁻ and SO₄²⁻-containing solutions, respectively, is not uniform, it is difficult to obtain the exact mass change in the gravimetric experiment. Therefore, PMPy/Cl and PMPy/SO₄ films were obtained from several redox cycles of PMPy/NO₃ films in Cl⁻ and SO₄²⁻-containing solutions, respectively. The mass change and current behaviors during the redox cycle for the ion-exchanged PMPy/Cl and PMPy/SO₄ films were similar to those for the PMPy/Cl and PMPy/SO₄ films polymerized in Cl⁻ and SO₄²⁻-containing solutions. The charge consumed during the polymerization of

* Author to whom correspondence should be addressed.
PMPy films is 300 mC/cm². PPy/NO₃ and PPy/Cl films were grown at 0.55 V in a solution of 0.1 M pyrrole and 1 M NaNO₃ and in a solution of 0.1 M pyrrole and 1 M NaCl, respectively. The film thickness of PPy films is estimated by assuming that 300 mC/cm² corresponds approximately to 1 µm with consideration of the reported value.¹⁶ Unless stated otherwise, the film thickness of PPy films is 1 µm. After the polymerization, the cell and the film were washed with distilled water, and then fresh electrolyte was introduced into the cell. All cyclic data in the cyclic EQCM experiment were measured during the second cycle of two consecutive cycles after being held at the positive potential limit.

The experimental apparatus and the data treatment were described previously.² It was shown that the comparison of the mass change obtained from the electrochemical impedance of a quartz crystal with the mass change from the resonance frequency of an oscillating quartz crystal verifies the linear relation between resonant frequency and mass.²¹ In this experiment, there is no significant difference between the mass change from the electromechanical impedance and the mass change from the resonant frequency. Thus, the mass change in the gravimetric experiment was obtained from the resonant frequency without consideration of the morphology change of the film. The calibrated mass sensitivity is 4.42 ng/Hz.

Results and Discussion

Water Transport in PMPy/NO₃, PMPy/Cl, and PMPy/SO₄ Films. Figure 1 shows cyclic voltammograms and simultaneously acquired mass change diagrams for PMPy/NO₃, PMPy/Cl, and PMPy/SO₄ films in aqueous electrolyte solutions. To compare mass charge rate (\(G = \frac{dM}{dt} \)) with current (\(I \)), \(G \) can be normalized by the factor \(-zF/W\) (i.e.,

\[
G_n = -\left(zF/W\right)G
\]

where \(G_n \) is normalized mass charge rate, \(z \) is the electric charge of an ion, and \(F \) is the Faraday constant. If the mass change of a film is caused by the movement of only one kind of ion and accompanying waters, \(W \) is given by

\[
W = W +YW_s
\]

where \(W \) is the molar mass of an ion, \(Y \) is the number of accompanying waters per ion, and \(W_s \) is the molar mass of water. In all mass change rate diagrams, \(G \) is normalized without consideration of water transport (\(W = W_{NO_3}^- \), \(W = W_{Cl}^- \), and \(W = W_{SO_4}^- \)).

During the redox reaction of a PMPy/NO₃ film in a 0.1 M Mg(NO₃)₂ solution (Figure 1a), \(G_n \) is similar to \(I \) in an overall potential range. In a 0.1 M Ba(NO₃)₂ solution (Figure 1b), \(G_n \) also shows similar behavior with \(I \). Moreover, \(I \) and \(G_n \) in Figure 1b are similar to those in Figure 1a. If cation movement in the opposite direction of NO₃⁻ movement was considerable, \(G_n \) would be much smaller than \(I \), and \(G_n \) in a Ba²⁺-containing solution would be smaller than that in a Mg²⁺-containing solution because the molar mass of Ba²⁺ (\(W_{Ba^{2+}} = 137.3 \)) is much larger than \(W_{Mg^{2+}} \) (=24.3). It is evident that cation transport is negligible in this system. If anion-specific transport was accompanied by considerable water transport at any potential, \(G_n \) would be much larger than \(I \). It is also evident that water transport is not large during NO₃⁻ transport.

During the redox reaction of a PMPy/Cl film in a 1 M Mg(Cl)₂ solution (Figure 1c), \(G_n \) is larger than \(I \) in an overall potential range. In a 1 M Ba(Cl)₂ solution (Figure 1d), \(G_n \) is also larger than \(I \). Noting that \(I \) and \(G_n \) in a 1 M Mg(Cl)₂ solution are similar to those in a 1 M Ba(Cl)₂ solution, it is clear that cation transport is also not important during Cl⁻ transport. Therefore, it can be concluded that the discrepancy between \(G_n \) and \(I \) is caused by the considerable number of accompanying waters per Cl⁻ (\(1 \)). During the redox reaction of a PMPy/SO₄ film in a 1 M MgSO₄ solution (Figure 1f), \(G_n \) is also larger than \(I \) in most potential range, indicating that \(1 \) is also considerable.

In all cyclic EQCM experiments, as the redox cycle proceeds, total mass change (\(\Delta M \)) and charge change (\(\Delta Q \)) during the cathodic or anodic scan decrease gradually, but the ratio of \(\Delta M \) to \(\Delta Q \) is constant. It shows that the ion transport behavior and \(Y \) are uniform irrespective of the number of redox cycle. Even at the first cathodic scan, the ratio \(\Delta M/\Delta Q \) is the same as that in the subsequent scan. It means that \(Y \) in the first cathodic scan is similar to that in the second one. It is known that the film after its deposition is compact. When a cation inserts into the compact film during the first cathodic scan, the break-in process occurs.⁷４ But, when an anion excludes from the film, there is no break-in process. It was shown that, in PPy/CuPTS films, the amount of water that moves with a cation during the first cathodic scan is much larger than that during the subsequent scan.⁷³ On the other hand, in this experiment, there is no difference in \(Y \) between the first cathodic scan and the second one. It also indicates that cation transport is negligible.

Figure 2 shows electrochemical capacitance plots and simultaneously acquired electrogravimetric capacitance plots in the same systems as those in Figure 1. The electrochemical capacitance plot is normalized by the factor \(-Wz/F\), i.e.,

\[
\frac{\Delta Q}{\Delta E_n} = -\left(WzF\right)\frac{\Delta Q}{\Delta E}
\]

where \(W \) is fitted by adjusting an electrochemical semicircle to an electrogravimetric one. The fitted \(W \) values are shown in Table 1.

The normalized electrochemical semicircle for a PMPy/NO₃ film in a 0.1 M Mg(NO₃)₂ solution (Figure 2a) shows good...
approximately to the molar mass of 0.8 H$_2$O. It indicates that is not large. For a PMPy/Cl film in 1 M Mg(Cl)$_2$ solution, all show that NO$_3^-$ moves with some waters into or out of the film. For a PMPy/SO$_4^2-$ film in 1 M MgSO$_4$ solution (Figure 2f), agreement with the electrogravimetric one, and the fitted W' is also larger than $W_{SO_4^{2-}}$ (=96.0) and the difference $W' - W_{SO_4^{2-}}$ corresponds to the molar mass of 0.6 H$_2$O.

To compare mass transport in the cyclic EQCM experiment with that in the impedance experiment, W' in the cyclic EQCM experiment is fitted by adjusting G_n to I at the same potential as that in the impedance experiment. The fitted W' values are also shown in Table 1. The fitted W' during the cathodic scan is similar to that during the anodic scan. It means that Y is uniform at the same potential irrespective of scan direction. Every W' in the cyclic EQCM experiment is a little larger than that in the impedance experiment. For a PMPy/Cl film in a 1 M Ba(Cl)$_2$ solution, W' at 0.3 V during the cathodic or anodic scan is similar to that at 0.4 V (Table 1). And also, three W' values at 0.3, 0.4, and 0.5 V in the impedance experiment are similar. It seems that Y does not change extensively as the applied potential varies. On the other hand, it was shown that Y per cation exhibits the hysteresis behavior during the redox cycle and increases during insertion of a cation, whereas it is uniform during exclusion of a cation. 2

In both cyclic experiment and impedance experiment, $Y_{SO_4^{2-}}$ is smaller than Y_{Cl^-} and $Y_{SO_4^{2-}}$. The hydration enthalpy increases in order of NO$_3^-$ (−309 kJ mol$^{-1}$) − Cl$^-$ (−364 kJ mol$^{-1}$) < SO$_4^{2-}$ (−1016 kJ mol$^{-1}$). It was shown that the sequence of Y per alkali-metal ion in PPy/CuPTS films is the same as that of the hydration number of the ion. 2 Thus, Y per anion also relates to the hydration number of an anion. It was shown that Y per cation in PPy/CuPTS films increases as the concentration of an electrolyte solution decreases. 2 But, in this experiment, Y per anion does not depend on the concentration of an electrolyte solution. In a 0.1 M Mg(Cl)$_2$ solution (Figure 1e), I and G_n are similar to those in a 1 M Mg(Cl)$_2$ solution (Figure 1c). In a 0.1 M Mg(Cl)$_2$ solution (Figure 2f), $W' (=49)$ is also similar to that in a 1 M Mg(Cl)$_2$ solution. In Table 1, every W' in a 1 M solution is similar to that in a corresponding 0.1 M solution.

Figure 3 shows electrochemical impedance plots for PMPy/NO$_3^-$, PMPy/Cl, and PMPy/SO$_4^2-$ films. The ionic resistance in a film (R_D) is obtained by fitting the impedance data with the modified Randle’s equivalent circuit. 19 It is interesting to note that R_D of a divalent anion SO$_4^{2-}$ is much larger than those of monovalent anions. It means that the ionic conductivity of SO$_4^{2-}$ in a film is much smaller than the ionic conductivities of NO$_3^-$ and Cl$^-$. But, in an aqueous electrolyte solution, the difference in the ionic conductivity between SO$_4^{2-}$ and NO$_3^-$ or Cl$^-$ is not large. 20 It was shown that the ionic conductivity
change rate diagrams (\(G_0\) 0.2 M Ba(NO_3)\(_2\)) and voltammograms and mass change rate diagrams for PPy/NO_3 films are shown in Figure 4. Assuming NO_3\(^-\) divalent ion and the charged polymer. Likewise, it seems that cation because of strong ion interaction between the divalent cation is much smaller than that of a monovalent ion. The small ionic conductivity of SO_4\(^{2-}\) of a divalent cation is much smaller than that of a monovalent cation because of strong ion–ion interaction between the divalent ion and the charged polymer. Likewise, it seems that the small ionic conductivity of SO_4\(^{2-}\) is due to strong ion–ion interaction in the film.

OH\(^-\) Transport in PPy/NO_3 and PPy/Cl Films. Cyclic voltammograms and mass change rate diagrams for PPy/NO_3 films are shown in Figure 4. Assuming NO_3\(^-\)–specific ion transport (\(W = W_{\text{NO}_3}\)), \(G\) is normalized by the factor \(-(zF/\mu M)\) of the charge difference related to the redox reaction of a PPy/NO_3 film in a Ba(NO_3)_2 solution.

Table 2: Fitted \(W\) for PPy/NO_3 Films at \(E = -0.1\) V vs Ag/AgCl in the Cyclic EQCM Experiment (Figure 4) and the Impedance Experiment (Figure 5)

<table>
<thead>
<tr>
<th>solution</th>
<th>cathodic</th>
<th>anodic</th>
<th>impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 M Ba(NO_3)_2</td>
<td>49</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>0.2 M Ca(NO_3)_2</td>
<td>47</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>0.2 M Ba(NO_3)_2/D_2O</td>
<td>49</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>0.2 M Ba(NO_3)_2/2 mM NaOH</td>
<td>38</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>0.2 M Ba(NO_3)_2/0.01 M HNO_3</td>
<td>44</td>
<td>44</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 3: \(\Delta Q\) and \(\Delta M\) during the Redox Cycle of PPy/NO_3 Films in 0.2 M Ca(NO_3)_2 (Figure 7)

<table>
<thead>
<tr>
<th>thickness, (\mu m)</th>
<th>(\Delta Q, \mu C)</th>
<th>(\Delta M, \mu g)</th>
<th>(\Delta M_a - \Delta M)</th>
<th>(\Delta M_c - \Delta M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>-3.04</td>
<td>1.52</td>
<td>-0.57</td>
<td>0.54</td>
</tr>
<tr>
<td>1.0</td>
<td>-9.02</td>
<td>7.75</td>
<td>-3.32</td>
<td>3.27</td>
</tr>
</tbody>
</table>

Figure 5. Electrogravimetric capacitance (\(\Delta M/\Delta E\)); (○) plots and normalized electrochemical capacitance (\(\Delta Q/\Delta E\)) (●) plots for PPy/NO_3 films at \(E = -0.1\) V vs Ag/AgCl in (a) 0.2 M Ba(NO_3)_2 (\(W = 31\)), (b) 0.2 M Ca(NO_3)_2 (\(W = 31\)), (c) 0.2 M Ba(NO_3)_2/D_2O (\(W = 31\)), and (d) 0.2 M Ba(NO_3)_2 + 0.01 M HNO_3 (\(W = W_{\text{NO}_3}\)).

Figure 6. Possible four kinds of mass transport during the redox reaction of a PPy/NO_3 film in a Ba(NO_3)_2 solution.

Figure 7. (a) Charge change diagrams (\(\Delta Q vs E\)) and (b) mass change diagrams (\(\Delta M vs E\)) for PPy/NO_3 films (scan rate = 10 mV/s, thickness = 0.2 \(\mu m\) (+) and 1 \(\mu m\) (-)) in 0.2 M Ca(NO_3)_2.

\[E vs Ag/AgCl, V\]

\[\Delta Q, \mu C\]

\[\Delta M, \mu g\]

\[\Delta M_a - \Delta M\]

\[\Delta M_c - \Delta M\]
film would be much smaller than that for the 1.0 µm one. It means that the charge difference is not due to the redox reaction of the film. |\Delta Q_{\text{aq}}| is always larger than |\Delta Q_{\text{r}}| irrespective of the number of redox cycle, indicating that reduction processes unrelated to the reduction of the film are present. Because there is no electroactive species except the film and the aqueous solution, the reduction processes seem to relate to the reduction of the aqueous solution. To check this possibility, the solution pH is monitored for a thick PPy/NO3 film (thickness = 10 µM) in a 0.2 M Ca(NO3)2 solution. The cell for pH measurement is composed of a double-compartment type connected by a glass frit. The pH value, which is measured after every 20th redox cycle, increases as 6.56, 7.34, 7.75, and 7.99. It means that the concentration of OH− increases with the number of redox cycle. Thus, it is clear that the charge difference is due to the reduction of an aqueous solution. In Figure 4a,b, Ga at a more negative potential than −0.8 V is very small, indicating that the mass change of the film is nearly zero, but the reduction current is considerable. It shows that the reduction of an aqueous solution occurs largely in the low potential region. Consequently, the difference between I and Ga in the cyclic EQCM experiment is accounted for partly by the reduction of an aqueous solution.

In order to investigate the presence of cation transport, the responses in a Ba2+-containing solution are compared with those in a Ca2+-containing solution. Ga and I in Figure 4a show similar behavior with those in Figure 4b, and two fitted W′ in capacitance plots of Figures 5a,b are also identical. If cation movement in the opposite direction of NO3− movement was considerable, Ga in a Ba2+-containing solution would be smaller than that in a Ca2+-containing solution because Wba(OH−) = 137.3 is much larger than Wca(OH−) = 40.1. It is evident that cation transport is negligible in this system.

If the difference between the fitted W′ (=31) and WNO3− (=62.0) is associated with water movement in the opposite direction of NO3− movement, the difference (W′ − WNO3− = 31) corresponds to the molar mass of 1.7 H2O. Considering that the molar mass of 1.7 D2O is 34, W′ in a H2O solution would be 3 larger than that in a D2O solution. But two fitted W′ in Figure 5a,c are identical, indicating that there is no opposite movement of water. Moreover, in the cyclic EQCM experiment, the fitted W′ in a H2O solution are similar to that in a D2O solution (Table 2). Thus, the water movement opposite to NO3− movement can be excluded.

From experimental results, it is evident that cation or water movement opposite to NO3− movement is not present. Two possibilities, OH− and H+ transport, remains. It was reported that OH−−transport is involved during the redox reaction of PPy/NO3 films and that dopant NO3− of PPy/NO3 films is gradually replaced by OH− after soaking in a neutral electrolyte solution. It was also reported that the contribution of H+ transport is considerable during the redox reaction of PPy/NO3 films that show similar behavior with PPy/Cl films in ion transport. As the contribution of OH− to ion transport increases, the mass change decreases because WOH− = 17.0 is much smaller than WNO3− (=62.0). If OH− transport is present, the mass change in a basic solution becomes smaller because of the increase in the contribution of OH−. In a basic solution (Figure 4c), the mass change is smaller than those in Figure 4a,b. But, Ga at a more negative potential than −0.6 V is positive during the cathodic scan and is negative during the anodic scan. It means that the mass in this potential range increases during the cathodic scan and decreases during the anodic scan. It indicates that there is cation transport in a basic solution. Thus, it is impossible to know from the small mass change in a basic solution whether OH− transport is present or not, because cation transport also causes the decrease in the mass change. If the difference between the fitted W′ (=31) and WNO3− (=62.0) is due to OH− transport, W′ in a D2O solution is 0.7 larger than that in a D2O solution because WOD− = 18 is larger than WOH− = 17. But, because of experimental error and instrumental limit, it is impossible to confirm that small difference. In an acidic solution (Figure 4d), I and Ga differ from those in Figure 4a,b. The fitted W′ in capacitance plots (Figure 5d) is 35, which is larger than those in Figure 5a−c. If H+ transport was present, W′ in more acidic solution would be smaller because of the increase in the contribution of H+. It is shown that OH− is generated by the reduction of an aqueous solution during the redox cycle. Thus, the concentration of OH− near a film is very high though it is not large in the bulk electrolyte solution. Probably, OH− produced by the reduction of an aqueous solution takes part in ion transport. Consequently, it seems that OH− transport in addition to NO3− occurs during the redox reaction of PPy/NO3 films.

As the redox cycle proceeds, the mass transport behavior in a neutral solution changes gradually. It becomes different from that in Figure 4a,b, and becomes similar to that in a basic solution (Figure 4c). It is shown that the solution pH increases with the number of redox cycle and that cation in a basic solution takes part in cation transport. Thus, the mass transport behavior becomes complex as the redox cycle proceeds.

Figure 8a shows a cyclic voltammogram and a mass change rate diagram in a 0.5 M BaCl2 solution for PPy/Cl films. Figure 8b shows an electrogravimetric capacitance plot and an electrochemical capacitance diagram (\(\Delta M/\Delta E\)) (\(\Delta Q/\Delta E\)) plot and a normalized electrochemical capacitance (\(\Delta Q/\Delta E\)) (\(\Delta Q/\Delta E\)) plot at E = −0.1 V vs Ag/AgCl (W = 25) for a PPy/Cl film in 0.5 M BaCl2.

OH− transport is present or not, because cation transport also causes the decrease in the mass change. If the difference between the fitted W′ (=31) and WNO3− (=62.0) is due to OH− transport, W′ in a D2O solution is 0.7 larger than that in a D2O solution because WOD− = 18 is larger than WOH− = 17. But, because of experimental error and instrumental limit, it is impossible to confirm that small difference. In an acidic solution (Figure 4d), I and Ga differ from those in Figure 4a,b. The fitted W′ in capacitance plots (Figure 5d) is 35, which is larger than those in Figure 5a−c. If H+ transport was present, W′ in more acidic solution would be smaller because of the increase in the contribution of H+. It is shown that OH− is generated by the reduction of an aqueous solution during the redox cycle. Thus, the concentration of OH− near a film is very high though it is not large in the bulk electrolyte solution. Probably, OH− produced by the reduction of an aqueous solution takes part in ion transport. Consequently, it seems that OH− transport in addition to NO3− occurs during the redox reaction of PPy/NO3 films.

As the redox cycle proceeds, the mass transport behavior in a neutral solution changes gradually. It becomes different from that in Figure 4a,b, and becomes similar to that in a basic solution (Figure 4c). It is shown that the solution pH increases with the number of redox cycle and that cation in a basic solution takes part in cation transport. Thus, the mass transport behavior becomes complex as the redox cycle proceeds.

Figure 8a shows a cyclic voltammogram and a mass change rate diagram in a 0.5 M BaCl2 solution for PPy/Cl films. Figure 8b shows an electrogravimetric capacitance plot and an electrochemical capacitance diagram (\(\Delta M/\Delta E\)) (\(\Delta Q/\Delta E\)) plot at −0.1 V. It shows that Ga in the cyclic EQCM experiment (W = Wct) is smaller than I in most potential range. The fitted W′ in the impedance experiment is 25, which is smaller than Wct (35.5). It indicates that OH− transport is important also during the redox reaction of PPy/Cl films.

It is shown that YNO3− is not large in NO3−-containing solutions for PMPy/NO3 films and that YCl− is considerable in Cl−-containing solutions for PMPy/Cl films. But, it is difficult to measure Y in PPy/NO3 and PPy/Cl films, because OH− as well as NO3− or Cl− transport take part in ion transport. Ga of Figure 4a,b is smaller than I in an overall potential range, whereas Ga of Figure 8a is larger than I at more positive potential than 0.0 V during the anodic scan. It seems that these behaviors are due to negligible YNO3− and considerable YCl−.

Conclusions

Water transport behavior during anion transport was obtained from dynamic and steady-state behaviors of electrical and
gravimetric responses for PMPy/NO₃, PMPy/Cl, and PMPy/ SO₄ films in electrolyte solutions containing a divalent cation. It is found that ion transport in these systems is anion-specific and that the number of accompanying waters per Cl⁻ or SO₄²⁻ is considerable, whereas the number per NO₃⁻ is not large. The number of accompanying waters per anion does not change extensively with the applied potential and the concentration of an electrolyte solution. Moreover, it is uniform irrespective of the number of redox cycle. The ionic conductivity of SO₄²⁻ is much larger than the ionic conductivities of NO₃⁻ and Cl⁻ because of strong ion–ion interaction in the film.

In PPy/NO₃ films and PPy/Cl films, the mass change during their redox reaction is much smaller than that of anion-specific ion transport. It is due to the reduction of an aqueous solution and the OH⁻ transport in addition to NO₃⁻ or Cl⁻ transport. There is no cation or water movement opposite to NO₃⁻ or Cl⁻ movement. Moreover, the production of OH⁻ by the reduction of an aqueous solution makes the mass transport behavior complex as the redox cycle proceeds.

Acknowledgment. This work was supported by the Korea Science and Engineering Foundation (Grant 94-0800-07-01-3).

References and Notes
